Compressed Sensing: Challenges and Emerging Topics

Mike Davies
Edinburgh Compressed Sensing research group (E-CoS)
Institute for Digital Communications
University of Edinburgh
Compressed sensing

Engineering Challenges in CS:

• What is the right signal model?
 Sometimes obvious, sometimes not. When can we exploit additional structure?

• How can/should we sample?
 Physical constraints; can we sample randomly; effects of noise; exploiting structure; how many measurements?

• What are our application goals?
 Reconstruction? Detection? Estimation?
CS today – the hype!

Papers published in Sparse Representations and CS [Elad 2012]

Lots of papers..... lots of excitement..... lots of hype....
CS today: - new directions & challenges

There are many new emerging directions in CS and many challenges that have to be tackled.

- Fundamental limits in CS
- Structured sensing matrices
- Advanced signal models
- Data driven dictionaries
- Effects of quantization
- Continuous (off the grid) CS
- Computationally efficient solutions
- Compressive signal processing
Compressibility and Noise Robustness
Noise/Model Robustness

CS is robust to measurement noise (through RIP). What about signal errors, $\Phi(x + e) = y$, or when x is not exactly sparse?

No free lunch!

Wideband spectral sensing

- Detecting signals through wide band receiver noise: noise folding!
 - 3dB SNR loss per factor of 2 undersampling [Treichler et al 2011]
Noise/Model Robustness

Compressible distributions
- Heavy tailed distributions may not be well approximated by low dimensional models
- Fundamental limits in terms of compressibility of the probability distribution [D. & Guo. 2011; Gribonval et al 2012]

Implications for Compressive Imaging
- Wavelet coefficients not exactly sparse
- Limits CS imaging performance

Adaptive sensing can retrieve lost SNR [Haupt et al 2011]
Sensing matrices
Generalized Dimension Reduction

Information preserving matrices can be used to preserve information beyond sparsity. Robust embeddings (RIP for difference vectors):

$$(1 - \delta) \|x - x'\|_2 \leq \|\Phi(x - x')\|_2 \leq (1 + \delta) \|x - x'\|_2$$

hold for many low dimensional sets.

- Sets of n points [Johnston and Lindenstrauss 1984]
 $$m \sim O(\delta^{-2} \log n)$$

- d-dimensional affine subspaces [Sarlos 2006]
 $$m \sim O(\delta^{-2}d)$$

- Arbitrary Union of L k-dimensional subspaces [Blumensath and D. 2009]
 $$m \sim O(\delta^{-2}(k + \log L))$$

- Set of r-rank $n \times l$ matrices [Recht et al 2010]
 $$m \sim O(\delta^{-2}r(n + l) \log nl)$$

- d-dimensional manifolds [Baraniuk and Wakin 2006, Clarkson 2008]
 $$m \sim O(\delta^{-2}d)$$
Structured CS sensing matrices

i.i.d. sensing matrices are really only of academic interest. Need to consider wider classes, e.g.:

- Random rows of DFT [Rudelson & Vershynin 2008]

\[
m \sim \mathcal{O}(k \delta^{-2} \log^4 N)
\]
Structured CS sensing matrices

i.i.d. sensing matrices are really only of academic interest. Need to consider wider classes, e.g.:

- Random samples of a bounded orthogonal system [Rauhut 2010]

Also extends to continuous domain signals.

δ-RIP of order k with high probability if:

$$m \sim \mathcal{O}(kN \mu(\Phi, \Psi)^2 \delta^{-2} \log^4 N)$$

where $\mu(\Phi, \Psi) = \max_{1 \leq i < j \leq N} |\langle \Phi_i, \Psi_j \rangle|$ is called the mutual coherence
Structured CS sensing matrices

i.i.d. sensing matrices are really only of academic interest. Need to consider wider classes, e.g.:

- Universal Spread Spectrum sensing [Puy et al 2012]

Sensing matrix is random modulation followed by partial Fourier matrix. δ-RIP of order k with high probability if:

$$m \sim O\left(k \delta^{-2} \log^5 N\right)$$

*Independent of basis Ψ!"
Fast Johnston Lindenstrauss Transform (FJLT)

Can generate computationally fast dimension reducing transforms [Alon & Chazelle 2006]

- The FJLT provides optimal JL dimension reduction with computation of $O(N \log N)$
- Enables fast approx. nearest neighbour search
- Used in related area of sketching...
Related ideas of Sketching

e.g. want to solve l_2-regression problem [Sarlos 06]:

$$x^* = \arg\min_x \|Ax - y\|_2$$

with $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times d}$.

Computational cost using normal equations: $O(nd^2)$

Instead use Fast JL transform $S \in \mathbb{R}^{r \times n}$ to solve:

$$\hat{x} = \arg\min_x \|(SA)x - Sy\|_2$$

If $r \sim d/\epsilon^2$ then this guarantees:

$$\|A\hat{x} - y\|_2 \leq (1 + \epsilon) \|Ax - y\|_2$$

with high probability and at a computational cost of: $O(nd \log d + \text{poly}(d/\epsilon))$

- Many other sketching results possible including for constrained LS, approximate SVD, etc…
Advanced signal models & algorithms
CS with Low Dimensional Models

What about sensing with other low dimensional signal models?

- Matrix completion/rank minimization
- Phase retrieval
- Tree based sparse recovery
- Group/Joint Sparse recovery
- Manifold recovery

... towards a general model-based CS? [Baraniuk et al 2010, Blumensath 2011]
Matrix Completion/Rank minimization

Retrieve the unknown matrix $X \in \mathbb{R}^{N \times L}$ from a set of linear observations

$$y = \Phi(X), \quad y \in \mathbb{R}^m \text{ with } m < NL.$$

Suppose that X is rank r.

Relax!

as with L_1 min., we convexify: replace $\text{rank}(X)$ with the nuclear norm

$$\|X\|_* = \sum_i \sigma_i,$$

where σ_i are the singular values of X.

$$\hat{X} = \arg\min_X \|X\|_* \text{ subject to } \Phi(X) = y$$

Random measurements (RIP) \rightarrow successful recovery if

$$m \sim O(r(N + L) \log NL)$$

e.g. the Netflix prize

– rate movies for individual viewers.
Phase retrieval

Generic problem:

Unknown $x \in \mathbb{C}^n$,
magnitude only observations: $y_i = |A_i x|^2$

Applications

• X-ray crystallography
• Diffraction imaging
• Spectrogram inversion

Phaselift

Lift quadratic \rightarrow linear problem using rank-1 matrix $X = xx^H$

Solve: $\hat{X} = \underset{X}{\text{argmin}} \|X\|_* \text{ subject to } \mathcal{A}(X) = y$

Provable performance but lifting space is huge! … surely more efficient solutions? Recent results indicate nonconvex solutions better.
Tree Structured Sparse Representations

Sparse signal models are type of "union of subspaces" model [Lu & Do 2008, Blumensath & Davies 2009] with an exponential number of subspaces.

\[
\text{# subspaces} \approx \left(\frac{N}{k} \right)^k
\]
(Stirling approx.)

Tree structure sparse sets have far fewer subspaces

\[
\text{# subspaces} \approx \frac{(2e)^k}{k+1}
\]
(Catalan numbers)

Example exploiting wavelet tree structures

Classical compressed sensing: stable inverses exist when

\[
m \sim O(k \log(N/k))
\]

With tree-structured sparsity we only need [Blumensath & D. 2009]

\[
m \sim O(k)
\]
Algorithms for model-based recovery

Baraniuk et al. [2010] adapted CoSaMP & IHT to construct provably good ‘model-based’ recovery algorithms.

Blumensath [2011] adapted IHT to reconstruct any low dimensional model from RIP-based CS measurements:

$$x^{n+1} = \mathcal{P}_A(x^n + \mu \Phi^T(y - \Phi x^n))$$

where $\mu \sim N/m$ is the step size, \mathcal{P}_A is the projection onto the signal model.

Requires a computationally efficient \mathcal{P}_A operator.
Model based CS for Quantitative MRI

[Davies et al. SIAM Imag. Sci. 2014]

Proposes **new excitation and scanning protocols** based on the Bloch model.

Quantitative Reconstruction

Use Projected gradient algorithm with a discretized approximation of the Bloch response manifold.
Compressed Signal Processing
Compressed Signal Processing

There is more to life than signal reconstruction:

- Detection
- Classification
- Estimation
- Source separation

May not wish to work in large ambient signal space, e.g. ARGUS-IS Gigapixel camera

CS measurements can be information preserving (RIP)... offers the possibility to do all your DSP in the compressed domain!

Without reconstruction what replaces Nyquist?

\[
\begin{align*}
Y &= \Phi Y' \\
\text{Noise} &\quad \text{Signal+Noise}
\end{align*}
\]

\[
\begin{align*}
\mathcal{H}_0 : y &= \Phi n \\
\mathcal{H}_1 : y &= \Phi(s + n)
\end{align*}
\]
Compressive Detection

The Matched Smashed Filter [Davenport et al 2007]

Detection can be posed as the following hypothesis test:

\[\mathcal{H}_0 : z = hn \]
\[\mathcal{H}_1 : z = h(s + n) \]

The optimal (in Gaussian noise) matched filter is \(h = s^H \)

Given CS measurements: \(y = \Phi s \), the matched filter (applied to \(y \)) is:

\[h = s^H \Phi (\Phi \Phi^H)^{-1} \]

Then

\[
P_D \approx Q \left(Q^{-1}(\alpha) - \sqrt{\frac{m}{N}} \sqrt{SNR} \right)
\]

\(Q \) - the Q-function, \(\alpha \) – Prob. false alarm rate

[Davenport et al 2010]
Joint Recovery and Calibration

Estimation and recovery, e.g. on-line calibration.

Compressed Calibration

Real Systems often have unknown parameters θ that need to be estimated as part of signal reconstruction.

$$y = \Phi(\theta)x$$

Can we simultaneously estimate x and θ?

Example – Autofocus in SAR

Imperfect estimation of scene centre leads to phase errors, ϕ:

$$Y = \text{diag}(e^{i\phi})h(X)$$

X - scene reflectivity matrix, Y - observed phase histories, $h(\cdot)$ - sensing operator.

Uniqueness conditions from dictionary learning theory [Kelly et al. 2012].
Joint Recovery and Calibration

Compressed Autofocus:
Perform joint estimation and reconstruction (not convex):

\[
\min_{\mathbf{X}, \mathbf{d}} \|\mathbf{X}\|_1 \quad \text{subject to} \quad \|\mathbf{Y} - \text{diag}(\mathbf{d})\mathbf{h}(\mathbf{X})\|_F \leq \epsilon \\
\quad \text{and} \quad d_i d_i^* = 1, i = 1, \ldots, N
\]

- Fast alternating optimization schemes available
- Provable performance? Open

No phase correction Post-recon. autofocus Compressive autofocus
Summary

Compressive Sensing (CS)
- combines sensing, compression, processing
- exploits low dimensional signal models and incoherent sensing strategies
- Related notion of `Sketching` in computer science allows faster computations

Still lots to do…
- Developing new and better model-based CS algorithms and acquisition systems
- Emerging field of compressive signal processing
- Exploit dimension reduction in signal processing computation: randomized linear algebra,… big data!
References

Compressibility and SNR loss

Structured Sensing matrices

References

Information Preserving Dimension Reduction

Structured Sparsity & Model-based CS

References

Compressed Signal Processing

