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Background: declipping
original

clipped

Clipping:

I Common distortion in signal processing

I Signal saturates above a certain threshold

Declipping:

I Recovering original signal from clipped signal

I Non-linear, highly under-determined inverse problem (only low energy
samples are available)

I Declipping strategies: AR modelling, bandwidth-limited models,
Bayesian approaches
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More recently: sparsity based approaches:

original

clipped

I y: measured clipped signal

I x: original clean signal

I Assume original signal is sparse x = Dα, where D ∈ RN×M (N ≤ M)
overcomplete dictionary and ‖α ‖0 ≤ K .

I “Straighforward” declipping formulation:

min
α
‖Mr(y −Dα)‖22 s.t. ‖α ‖0 ≤ K , (1)

where Mr is a binary sensing matrix defining the reliable (i.e.
unclipped) samples.

I Many well-known algorithms to solve (1), e.g. (Orthogonal) Matching
Pursuit, Iterative Hard Thresholding (IHT), etc...
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Example:

I α̂ = argminα ‖Mr(y −Dα)‖22 s.t. ‖α ‖0 ≤ K

I estimate full clean signal x̂ = Dα̂:

original

clipped

estimate

I “classical” well known sparse recovery algorithms do not
perform well on declipping!
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I Strategy: enforce reconstructed samples to be above/below the
clipping threshold [Adler2012]:

min
α
‖Mr(y −Dα)‖22 s.t.


‖α ‖0 ≤ K

Mc+ Dα � θ+ Mc+ 1

Mc- Dα � θ−Mc- 1

(2)

where Mc+ and Mc- define the position of the positive/negative
clipped samples, and θ+/θ− positive/negative clipping thresholds.

I Formulation is consistent with the clipping process (fully models our
knowledge about the clipping process)

I Difficult constrained, high-dimensional, non-convex
optimization problem!
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ADMM-based sparse declipper: (SPADE) [Kitic,2015]

min
α
‖α ‖0 + 1C(y)(Dα) (3)

with 1C(y) indicator function of the set C(y), and:

C(y) , {x|Mr y = Mr x,Mc+ x �Mc+ y,Mc- x �Mc- y} (4)

the constraint set associated with clipped signal y.

I Alternates between hard-thresholding, and non-orthogonal
projection:

argmin
α
‖u−α ‖22 + 1C(y)(Dα), u ∈ RM (5)

I Hard to compute when D is not a tight frame! (DTD 6= ξI)

I Needs to be computed iteratively, using (e.g.) another nested ADMM
(Heavy computational cost!)

I Unstable (does not converge when sparsity level K is fixed)
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Alternative consistent strategies:

I Analysis sparsity models [Kitic,2015], [Gaultier,2017]

I `1-based constrained formulations [Foucart,2016]⇒ low performance,
still extremely slow

I Smooth regularizers to enforce clipping consistency
[Kitic,2013],[Siedenburg,2014]:

min
α
‖Mr(y −Dα)‖22+‖Mc+(θ+1−Dα)+‖22

+‖Mc-(θ−1−Dα)−‖22 s.t. ‖α ‖0 ≤ K ,
(6)

with (u)+ = max(0, u) and (u)− = −(u)+.

I Quadratic cost when clipping constraint is violated
(θ+ Mc+ 1 �Mc+ Dα)

I Smooth cost function
I Gradient descent based algorithms can be extended (“Consistent IHT

for signal declipping” [Kitic,2013])
I Computationally simple
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Dictionary learning

I All declipping approaches use fixed dictionaries (DCT, Gabor)

I Dictionary learning has proved to perform better in many inverse
problems (denoising, inpainting, deblurring).

I Dictionary learning from clean data {xt}t=1,...,T :

min
D∈D,αt

T∑
t=1

‖xt −Dαt ‖22 s.t. ∀t, ‖αt ‖0 ≤ K (7)

I Adapt the dictionary to the observed data
I Make use of similarities/correlation between frames {xt}t=1,...,T

I Many algorithms to solve (7) (MOD, K-SVD, ...) in the context of
clean/noisy data

I Not addressed in the context of clipped data
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Dictionary learning for declipping?

Dictionary learning often performs many iterations over large datasets, so
we need a formulation that is:

I computationally tractable

I stable

I does not make any assumption on the dictionary (tightness etc...)
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Proposed problem formulation

I Reformulate declipping as a problem of minimizing the distance
between the approximated signals Dαt , and their feasibility sets
C(yt):

min
D∈D,αt

∑
t

d(Dαt , C(yt))2 s.t. ∀t, ‖αt ‖0 ≤ K , (8)

with:

C(yt) , {x|Mr yt = Mr x,Mc+ x �Mc+ yt ,M
c- x �Mc- yt}, (9)

and d(x, C(y)) is the Euclidean distance between x and the set C(y):

d(x, C(y)) = min
z∈C(y)

‖x− z‖2. (10)

I Enforces signals to be “close” to their feasibility sets, instead of
being exactly in the set.

I Minimize distance to a set, instead of minimizing distance to a point!

Lucas Rencker (Univ. of Surrey) Consistent dict. learning for signal declipping 05/07/2018 11 / 21



Proposed problem formulation

I Reformulate declipping as a problem of minimizing the distance
between the approximated signals Dαt , and their feasibility sets
C(yt):

min
D∈D,αt

∑
t

d(Dαt , C(yt))2 s.t. ∀t, ‖αt ‖0 ≤ K , (8)

with:

C(yt) , {x|Mr yt = Mr x,Mc+ x �Mc+ yt ,M
c- x �Mc- yt}, (9)

and d(x, C(y)) is the Euclidean distance between x and the set C(y):

d(x, C(y)) = min
z∈C(y)

‖x− z‖2. (10)

I Enforces signals to be “close” to their feasibility sets, instead of
being exactly in the set.

I Minimize distance to a set, instead of minimizing distance to a point!

Lucas Rencker (Univ. of Surrey) Consistent dict. learning for signal declipping 05/07/2018 11 / 21



Proposed problem formulation

I Reformulate declipping as a problem of minimizing the distance
between the approximated signals Dαt , and their feasibility sets
C(yt):

min
D∈D,αt

∑
t

d(Dαt , C(yt))2 s.t. ∀t, ‖αt ‖0 ≤ K , (8)

with:

C(yt) , {x|Mr yt = Mr x,Mc+ x �Mc+ yt ,M
c- x �Mc- yt}, (9)

and d(x, C(y)) is the Euclidean distance between x and the set C(y):

d(x, C(y)) = min
z∈C(y)

‖x− z‖2. (10)

I Enforces signals to be “close” to their feasibility sets, instead of
being exactly in the set.

I Minimize distance to a set, instead of minimizing distance to a point!

Lucas Rencker (Univ. of Surrey) Consistent dict. learning for signal declipping 05/07/2018 11 / 21



Properties of d(x, C(y))2:

d(x, C(y))2 = minz∈C(y) ‖x− z‖22 so:

I d(x, C(y))2 is continuous

Moreover since C(y) is convex:

I d(x, C(y))2 is convex, as a minimum of convex functions over a
convex set [Boyd,2004].
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Differentiability of d(x, C(y))2 = minz∈C(y) ‖x− z‖2
2:

Danskin’s Min-Max theorem [Bonnans,1998]:

I C a compact set

I g(x) = minz∈C φ(x, z)

I ∀z ∈ RN , φ(., z) is differentiable with gradient ∇xφ(x, z)

I φ(x, z) and ∇xφ(x, z) are continuous on RN × RN

If:

I argminz∈C φ(x, z) = {z∗} is unique

Then:

I g(.) is differentiable with gradient:

∇g(x) = ∇xφ(x, z∗). (11)
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Differentiability of d(x, C(y))2:

Here:

I d(x, C(y))2 = minz∈C(y) ‖x− z‖22
I ∇x

1
2‖x− z‖22 = x− z

I argminz∈C(y) ‖x− z‖22 , ΠC(y)(x) orthogonal projection of x onto
set C(y).

I ⇒ d(x, C(y))2 is differentiable with gradient:

∇x
1

2
d(x, C(y))2 = x− ΠC(y)(x) (12)
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Summary/Comparison with Linear Least Squares:

L(Dα, y) =
1

2
‖Dα−y‖22 (13)

I Continuous

I Convex

I Differentiable with gradient:
∇αL(Dα, y) = DT (Dα−y)

I Lipschitz gradient

I (Closed-form solution)

L(Dα, y) =
1

2
d(Dα, C(y))2 (14)

I Continuous

I Convex

I Differentiable with gradient:
∇αL(Dα, y) =
DT (Dα−ΠC(y)(Dα))

I Lipschitz gradient

When C(y) = {y} (unclipped signal), the two models are equivalent!
I Generalizes the Linear Least Squares cost
I Minimizing the proposed cost (14) is as simple as minimizing (13)
I Performing consistent sparse declipping is as simple as doing

(regular) sparse coding!
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Algorithm

min
D∈D,αt

∑
t

d(Dαt , C(yt))2 s.t. ∀t, ‖αt ‖0 ≤ K

Alternate minimization between sparse coefficients αt and dictionary D:

Proposed Consistent dictionary learning algorithm:

Iterate until convergence:
Sparse coding step:
for t = 1, ...,T :

αt ← αt +µ1DT (ΠC(yt)(Dαt)−Dαt) . Gradient descent step

αt ← HK (αt) . Hard-thresholding

Dictionary update step:

D← ΠD
(
D + µ2

∑
t

(ΠC(yt)(Dαt)−Dαt)α
T
t

)
. Gradient desc.
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Explicit computation of projection operator

I The algorithm requires the computation of projections ΠC(y)(Dα) at
each iteration.

I The projection operator ΠC(y)(.) can be computed in closed form as:

ΠC(y)(Dα) = Mr y + Mc+ max(y,Dα) + Mc- min(y,Dα).

I Simple elementwise maxima (negligible computational cost)

I This also shows that the cost d(Dα, C(y)) can be written explicitly
as:

d(Dα, C(y))2 =‖Mr(y −Dα)‖22 + ‖Mc+(y −Dα)+‖22
+ ‖Mc-(y −Dα)−‖22,

I Equivalent to regularization-based methods

I Sparse coding step is equivalent to Consistent IHT [Kitic2013]!
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Experiments
I Tested on audio signals, T = 2500 time frames of size N = 256, and

dictionaries of size M = 512.
I Signal-to-Distortion ratio (SDR), computed on the clipped samples,

at different clipping levels
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Figure: Comparison with state-of-the-art dictionary learning algorithms
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Conclusion
I Re-formulate the declipping problem as minimizing the distance to a

convex feasibility set
I Convex and differentiable cost function, generalizes linear least

squares ⇒ simple optimization problem.
I Consistent dictionary learning improves compared to consistent sparse

coding with fixed dictionary.

Future work:

C(y) = {x|Mr y = Mr x,Mc+ x �Mc+ y,Mc- x �Mc- y}
= {x|f (x) = y}
= f −1(y)

where f is the nonlinear clipping function.
I extend the proposed method to other nonlinear functions (ex:

quantization, 1-bit sensing)
I extend other sparse coding/dictionary learning algorithms to optimize

the proposed cost function
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Consistent dictionary learning for signal declipping
L. Rencker, F. Bach, W. Wang, Mark D. Plumbley

Code and audio examples available at:
http://www.cvssp.org/Personal/LucasRencker/software.html

or:
https://github.com/LucasRr

Thank you!
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