

Machine Sensing Training Network

A greedy algorithm with learned statistics for sparse signal reconstruction

Lucas Rencker, Wenwu Wang, Mark D. Plumbley

Centre for Vision, Speech and Signal Processing, University of Surrey, UK Email: {I.rencker, w.wang, m.plumbley}@surrey.ac.uk

Abstract

We propose a greedy OMP-like algorithm that uses simple first order statistics, for sparse signal reconstruction. The proposed algorithm performs better when reconstructing a signal from a few noisy samples, with statistics learned from a training signal.

Problem formulation

We consider the sparse signal reconstruction problem:

$$\hat{x} = \underset{x}{\operatorname{argmin}} \|y - Dx\|_{2}^{2}, \text{ s.t. } \|x\|_{0} < K,$$

(1)

(2)

(3)

(4)

(5)

where y is a **noisy signal** with **missing samples**.

Orthogonal Matching Pursuit (OMP) [1]

Performance evaluation

We reconstruct an image from 10% of noisy pixels, using statistics learnt on a training image:

Starting from residual r = y, and support $\Omega = \emptyset$, iterate:

Select an atom from the dictionary:

$$\hat{i} = \underset{i}{\operatorname{argmax}} \frac{\left| \langle d_i, r_{k-1} \rangle \right|^2}{\|d_i\|^2}$$

Update the coefficients in the support Ω_k :

$$\begin{aligned} x_k &= \underset{u}{\operatorname{argmin}} \|y - D_{\Omega^k} u\|_2^2 \\ &= (D_{\Omega^k}^T D_{\Omega^k})^{-1} D_{\Omega^k}^T y \end{aligned}$$

Update the residual:

$$r_k = y - D_{\Omega^k} x_k$$

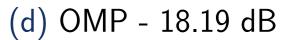
Properties of OMP:

- (2), (3) and (4) ensures that **atoms are not selected twice**.
- the coefficient update (3) ensures **steepest descent** of the residual error at each iteration.

Covariance-Assisted Matching Pursuit (CAMP) [2]

[2] proposed to improve the coefficient update step by introducing the **mean** μ^{nz} and **covariance** Λ^{nz} of the *non-zero* coefficients:

(c) Input - 6.32 dB



Select atom as in (2)

• Solve $y = D_{\Omega^k} x_k + v$, assuming $x_k \sim \mathcal{N}(\mu_k, \Lambda_k)$ and $v \sim \mathcal{N}(0, \Sigma)$: $x_{k} = (D_{\Omega^{k}}^{T} \Sigma^{-1} D_{\Omega^{k}} + \Lambda_{k}^{-1})^{-1} (D_{\Omega^{k}}^{T} \Sigma^{-1} y + \Lambda_{k}^{-1} \mu_{k}).$

• Update the residual as in (4).

Analysis of CAMP:

- Takes into account the mean and covariance of the non-zero coefficients in the coefficient update. However:
- The new update step (5) does not guarantee multiple selection of the same atom
- (5) does not correspond to steepest decent of residual error any more.

Proposed algorithm

We propose instead to solve:

$$\hat{x} = \underset{x}{\operatorname{argmin}} [(y - Dx)^T \Sigma^{-1} (y - Dx) + (x - \mu)^T \Lambda^{-1} (x - \mu)] \text{ s.t. } \|x\|_0 < K, \quad (6)$$

with μ and Λ the **mean** and **covariance** of x. (6) can be reformulated as:

$$\hat{x} = \underset{x}{\operatorname{argmin}} \| \begin{bmatrix} \Sigma^{-1/2} y \\ \Lambda^{-1/2} \mu \end{bmatrix} - \begin{bmatrix} \Sigma^{-1/2} D \\ \Lambda^{-1/2} \end{bmatrix} x \|^2 \text{ s.t. } \|x\|_0 < K$$
(7)

$$= \underset{x}{\operatorname{argmin}} \|\tilde{y} - \tilde{D}x\|_{2}^{2} \text{ s.t. } \|x\|_{0} < K$$
(8)

(6) can be solved in a greedy OMP-like way. Starting from $r_1 = y$ and $r_2 = \mu$, iterate:

(e) CAMP - 20.15 dB

(f) Proposed - 21.22 dB

Figure 1: Reconstruction of image (a) with 90% of missing pixels, and additive Gaussian noise ($\sigma = 30$). The statistics (mean μ and covariance Λ) are learned from the training image (b). Each algorithm was performed using 8×8 patches, a DCT dictionary $D \in \mathbb{R}^{64 \times 256}$ and a maximum number of atoms $K_{\text{max}} = 32$.

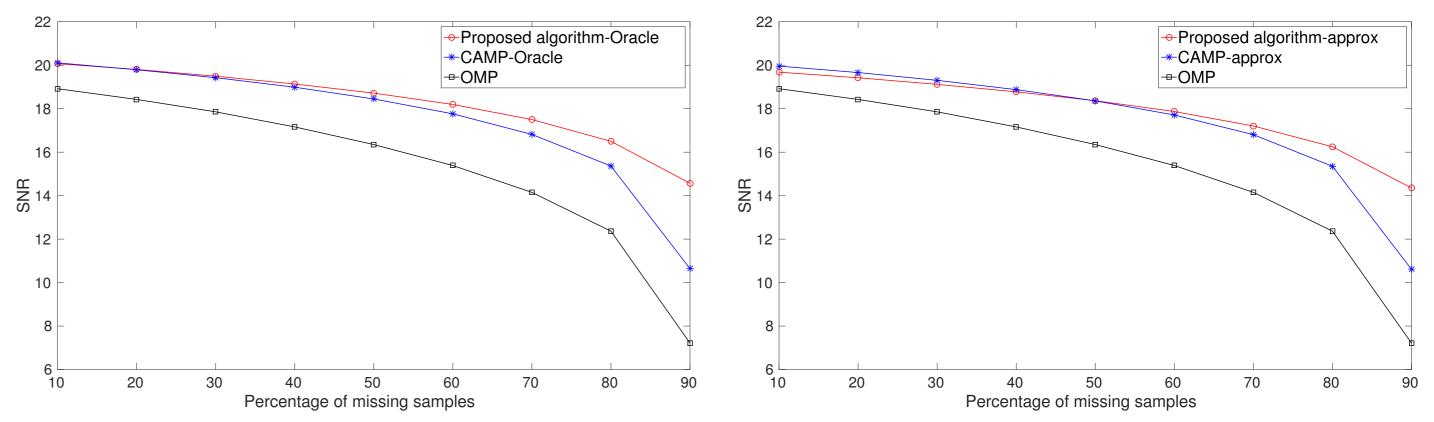


Figure 2: Comparison of OMP, CAMP and proposed algorithm on image restoration from a few noisy samples. Left: statistics learned from the test image. Right: statistics learned from a training image. The results are averaged over 150,000 patches taken from 6 images.

$$\hat{\imath} = \underset{i}{\operatorname{argmax}} \frac{\left| e_i^T D^T \Sigma^{-1} r_1^{k-1} + e_i^T \Lambda^{-1} r_2^{k-1} \right|^2}{e_i^T D^T \Sigma^{-1} D e_i + e_i^T \Lambda^{-1} e_i},$$

Coefficient update:

 $x_{k} = (D_{\Omega^{k}}^{T} \Sigma^{-1} D_{\Omega^{k}} + S_{k} \Lambda^{-1} S_{k}^{T})^{-1} (D_{\Omega^{k}}^{T} \Sigma^{-1} y + S_{k} \Lambda^{-1} \mu)$ (10)

• Residual update:

$$r_1^k = y - D_{\Omega^k} x_k$$

$$r_2^k = \mu - S_k^T x_k$$
(11)

 \Rightarrow Takes into account mean μ and covariance Λ at every step \Rightarrow Same practical properties as OMP

Conclusion

The proposed algorithm allows to take into account the first order statistics of the coefficient vector, while keeping the practicality of OMP. Experiments show improved performance when only a few noisy samples are available.

References

[1] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition," in 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40-44.

[2] A. Adler, "Covariance-Assisted Matching Pursuit," IEEE Signal Processing Letters, vol. 23, pp. 149–153, Jan. 2016.

The research leading to these results has received funding from the European Union's H2020 Framework Programme (H2020-MSCA-ITN-2014) under grant agreement no 642685 MacSeNet

(9)

