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Abstract

We propose a greedy OMP-like algorithm that uses simple first order statistics, for sparse
signal reconstruction. The proposed algorithm performs better when reconstructing a
signal from a few noisy samples, with statistics learned from a training signal.

Problem formulation

We consider the sparse signal reconstruction problem:
x̂ = argmin

x
‖y −Dx‖2

2, s.t. ‖x‖0 < K, (1)
where y is a noisy signal with missing samples.

Orthogonal Matching Pursuit (OMP) [1]

Starting from residual r = y, and support Ω = ∅, iterate:

•Select an atom from the dictionary:

ı̂ = argmax
i

|〈di, rk−1〉|2

‖di‖2 (2)

•Update the coefficients in the support Ωk:
xk = argmin

u
‖y −DΩku‖2

2

= (DT
ΩkDΩk)−1DT

Ωky
(3)

•Update the residual:
rk = y −DΩkxk (4)

Properties of OMP:
• (2), (3) and (4) ensures that atoms are not selected twice.
• the coefficient update (3) ensures steepest descent of the residual error at each
iteration.

Covariance-Assisted Matching Pursuit (CAMP) [2]

[2] proposed to improve the coefficient update step by introducing the mean µnz and
covariance Λnz of the non-zero coefficients:

• Select atom as in (2)
• Solve y = DΩkxk + v, assuming xk ∼ N (µk,Λk) and v ∼ N (0,Σ):

xk = (DT
ΩkΣ−1DΩk + Λ−1

k )−1(DT
ΩkΣ−1y + Λ−1

k µk). (5)
• Update the residual as in (4).

Analysis of CAMP:
• Takes into account the mean and covariance of the non-zero coefficients in the
coefficient update. However:

• The new update step (5) does not guarantee multiple selection of the same atom
• (5) does not correspond to steepest decent of residual error any more.

Proposed algorithm

We propose instead to solve:
x̂ = argmin

x
[(y −Dx)TΣ−1(y −Dx) + (x− µ)TΛ−1(x− µ)] s.t. ‖x‖0 < K, (6)

with µ and Λ the mean and covariance of x. (6) can be reformulated as:

x̂ = argmin
x
‖


Σ−1/2y

Λ−1/2µ

−

Σ−1/2D

Λ−1/2

x‖
2 s.t. ‖x‖0 < K (7)

= argmin
x
‖ỹ − D̃x‖2

2 s.t. ‖x‖0 < K (8)

(6) can be solved in a greedy OMP-like way. Starting from r1 = y and r2 = µ, iterate:

•Atom selection step:

ı̂ = argmax
i

∣∣∣∣∣∣eTi DTΣ−1rk−1
1 + eTi Λ−1rk−1

2
∣∣∣∣∣∣
2

eTi D
TΣ−1Dei + eTi Λ−1ei

, (9)

•Coefficient update:
xk = (DT

ΩkΣ−1DΩk + SkΛ−1STk )−1(DT
ΩkΣ−1y + SkΛ−1µ) (10)

•Residual update:
rk1 = y −DΩkxk

rk2 = µ− STk xk (11)

⇒ Takes into account mean µ and covariance Λ at every step
⇒ Same practical properties as OMP

Performance evaluation

We reconstruct an image from 10% of noisy pixels, using statistics learnt on a training
image:

(a) Original image (b) Training image

(c) Input - 6.32 dB (d) OMP - 18.19 dB

(e) CAMP - 20.15 dB (f) Proposed - 21.22 dB
Figure 1: Reconstruction of image (a) with 90% of missing pixels, and additive Gaussian noise (σ = 30). The
statistics (mean µ and covariance Λ) are learned from the training image (b). Each algorithm was performed
using 8× 8 patches, a DCT dictionary D ∈ R64×256 and a maximum number of atoms Kmax = 32.
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Figure 2: Comparison of OMP, CAMP and proposed algorithm on image restoration from a few noisy samples.
Left: statistics learned from the test image. Right: statistics learned from a training image. The results are
averaged over 150,000 patches taken from 6 images.

Conclusion

The proposed algorithm allows to take into account the first order statistics of the coefficient
vector, while keeping the practicality of OMP. Experiments show improved performance
when only a few noisy samples are available.
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