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Abstract

This paper describes how the detection of key audio events ina
sports game (tennis) can be enhanced by the use of high-level
information. High-level features are able to provide useful con-
straints on the detection procedure, and thus to improve detec-
tion performance. We define two types of event based infor-
mation: event dependency and inter-event timing. These re-
spectively characterize the identity of the next event and the
time at which the next event will occur. Probabilistic models
of high-level constraints are developed, and then integrated into
our event detection framework. We test this approach on au-
dio tracks extracted from two different tennis games. The re-
sults show that significant improvements in both accuracy and
computational efficiency are obtained when applying high-level
information.
Index Terms: Event detection, context information, audio in-
formation

1. Introduction
Our ambitious long-term goal is to understand multimodal in-
teraction between humans, and we use a sports game, tennis, as
a starting-point. In a sports game, the goals of the interaction
are simple and clearly defined and the interaction is subjectto
clear rules. As such, it can be analysed in terms of a sequence
of “events”. Our work focuses on the retrieval of this sequence
from audio information associated with the game: in later work,
we will combine this with information obtained from analysing
the video signal from the event.

Other work has shown that the context in which objects and
events occur plays a crucial role in technologies such as video
retrieval and image understanding. [1, 2, 3]. Objects and events
never occur in isolation: they co-occur and co-vary with other
objects and in particular environments, and this behaviourpro-
vides a rich source of contextual associations that provideclues
to the identity of the object or events. In this paper, we uti-
lize context information to improve the performance of auto-
matically detecting and identifying the match events occurring
within a tennis game.

Research on audio event detection has already been widely
developed [4, 5, 6, 7, 8, 9]. Some of this work [6, 8, 7] focuses
on the classification of isolated sound classes. It is mainlycon-
cerned with low-level perceptual features and the use of spec-
tral clustering techniques. Similar work has also been done
on event detection in sports games, such as tennis [12, 9, 13],
football[15] and basketball[14]. These work has mainly relied
on the use of visual information to find the boundaries of scenes
and events, with audio information only adding ancillary infor-
mation. Other work [15, 14] has even attempted to retrieve tim-
ings from a time stamp on the video.

By contrast, we focus on deriving the key events in a ten-
nis game using purely audio information–later, we will combine
this with information derived from visual analysis, and we ex-
pect that the two media streams will provide complementary
and synergistic information. In previous work [11], we have
demonstrated that it is possible to obtain a sequence of audio
events with good accuracy. However, not all events convey the
same amount of information: for instance, the event “crowd
applause” may function as a useful contextual marker for the
progress of the game, but gives little information on its state.
We focus here on detecting three key audio events, which pro-
vide information about the state of the game and how it has
changed since the last state. Interestingly, these events (the um-
pire’s speech, the sound of the automatic detector that adjudges
a serve as “let”, and the call of a line judge in reporting ball
out) are only available from the audio channel, and so make a
convincing argument for combining video and audio informa-
tion. These three events are difficult to detect, because there are
often overlapping interfering noise with them and the last two
are short and of low amplitude. We make use of two types of
context information, event dependency and inter-event timing.
These provide constraints about the identity of the most prob-
able event to occur next, and where it is likely to be located in
time.

This paper is organised as follows: the data and basic anal-
ysis techniques are introduced in Section 2. Section 3 describes
what context information we use and how it is integrated into
our framework. Section 4 describes the experimental proce-
dure. Experiments and analysis are presented in Section 5, and
we discuss and conclude in Section 6.

2. Data
The data used was mainly extracted from DVDs of Wimbledon
singles tennis matches played in 2008. It consists of ten audio
tracks, each lasting about 22 minutes (eight minutes for Track
8), taken from video recordings of two different tennis matches.
Nine of the tracks (Track 1–9) are taken from the same tennis
match (Murray vs. Gasquet) and Track 10 is from the other one
(Federal vs. Nadal).

Audio analysis was standard: the audio sequence was win-
dowed into 30ms-length frames with 20ms overlapping from
which 39-D MFCC vectors were generated. Cepstral mean nor-
malization was applied at the track level. Frame-based classi-
fication was done by using a Gaussian mixture model for each
event [11], which is trained with the audio signals from Track 1,
2, and 3. Each audio track was manually segmented into a se-
quence of “audio events”, which represent who or what makes
the sound. The details are shown in Table 1.

In this paper, we specifically focus on the detection of the
three audio events UMP, LJ and BP. Our previous work showed



Figure 1: A single point of a tennis game represented as a probabilistic finite-state automaton.

Table 1: The Audio Events Classified
Audio Event Name Match Event

Chair umpire’s speech UMP Report Score
Line judge’s shout LJ Report serve out, fault etc.
Sound of ball hit BS Serve, Rally

Crowd noise CN
Beep BP Let

Commentators’ speech COM
silence SIL -

that these were more difficult to detect than the other four events
shown in Table 1, but they are highly informative about the
match state and progress.

3. Theoretical Framework
3.1. Definition of event level constraints

To improve the accuracy of the audio event detection, we uti-
lize two kinds of event based information. Figure 1 represents
a single point of a tennis game as a probabilistic finite-state au-
tomaton, with the nodes of the automaton representing match
events. Events in a game do not immediately follow each other:
there is always a period between two successive events where
the previous event has finished and the next one is yet to be-
gin, and such periods are labelled as “null” in our marked-up
training-data. In this figure, the range of observed times from
the end of one event to the beginning of another event is shown
on the arc connecting the two events, as are the probabilities that
an event succeeds another event to which it is connected. This
data underlying this diagram enables us to estimate two useful
pieces of contextual information:

1. theN -gram probability of an event given a history of the
N − 1 previous events, analogous to a language-model
in speech recognition (in practice we confine ourselves
to N = 2 because of data sparsity);

2. the probability density functions of the time-gaps be-
tween events.

Figure 2 shows the probability density functions (PDFs) of
the time gap between two event pairs: “Serve–Let” and “Serve–
Rally” (Note that because the x-axis is logarithmic, the lower x-
values are compressed: both PDFs do sum to one). The fact that
these PDFs are well-separated is very useful: firstly, it will dis-
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Figure 2: Examples of the distribution of time gap

criminate between the events “Let” and “Rally” given that the
event “Serve” has been detected. It also helps to make searching
more efficient: given that the event “Serve” we know that there
is no need to search for the event “Let” at any time beyond the
end of the left curve of Figure 2.

3.2. Modeling context for event detection

Although this contextual information is not on its own suffi-
cient for event identification, it provides very useful constraints
on the identity of an event. We hence integrate this contextual
information into our event detection system.

If we denote a match event asME and an observed audio
signal (i.e. a sequence of frames) asO, for recognition pur-
poses, we estimate

Pr(ME|O) = Pr(O|ME) Pr(ME). (1)

Pr(O|ME) andPr(ME) can be viewed as an acoustic model
and a event based language model, respectively. The term
Pr(ME) depends on both the previous event and the time-gap
since the previous event, and so can be approximated as:

Pr(ME) ≈

Nevents∏

i=2

Pr(Ti−1,i|MEi−1, MEi) Pr(MEi|MEi−1)

(2)

wherePr(Ti−1,i|MEi−1, MEi) is the probability that we ob-
serve a time-gap ofTi−1,i seconds between eventsMEi−1 and



MEi. Experimental observation showed that the probability
distribution of the time gapPr(Ti,i+1|MEi−1, MEi) between
two adjacent events could be well-approximated by a Gaussian
distribution, whose mean and variance are estimated from the
training data.

By combining equation 2 and equation 1, we obtain:

Pr(MEi|Oi) = Pr(Oi|MEi)Pr(Ti−1,i|MEi−1, MEi)

×Pr(MEi|MEi−1)

HencePr(Ti−1,i|MEi−1, MEi) can be viewed as a “weight-
ing term” on Pr(Oi|MEi) that highlights regions where
event MEi is most likely to occur after timeTi−1,i given
event MEi−1. There is a practical problem of balancing
the contribution of this probability with the acoustic proba-
bility Pr(Oi|MEi). We have found it useful to use an ex-
ponential function to smooth the weight of the time-gap con-
tribution, and we therefore change the time gap weight from
Pr(Ti−1,i|MEi−1, MEi) to expλ∗Pr(Ti−1,i|MEi−1,MEi). λ
is a parameter that is determined experimentally. In this paper,
it is set to 5. In practice, performance varies little withλ.

4. Experimental Setup
We evaluated the performance of the model for both accuracy
and computational efficiency. The baseline is obtained by us-
ing a set of Gaussian mixture models (GMMs), one for each
audio event [11], to classify each audio frame. After classifi-
cation, any short silence periods (less than 100ms in duration)
are removed, and then the labels of frames that have the same
labelling are merged to create a (noisy) sequence of events.The
acoustic models and the models for event dependency and inter-
event timing are trained on the manual transcriptions of Tracks
1, 2, and 3. Testing is performed on the remaining tracks.

To evaluate the detection performance, we use the F-score
measure, defined as:

Fscore = 2 ·
Precision · Recall

P recision + Recall
(3)

Precison =
#Correctly Detected Events

#Detected Events
(4)

Recall =
#Correctly Detected Events

#True Events
(5)

A Correctly Detected Event is one that occurs in an approxi-
mately correct region. To determine these regions, we compute
the mean position in time (MT) of each hand-labelled event us-
ing its start time (ST) and end time (ET):

MTevent = (STevent + ETevent)/2 (6)

If MTevent is located within the time range of a detected event
with the same labelling, then the detected event is viewed asa
correct detection. At-test is used to decide whether results are
significantly different.

5. Experimental Results and Analysis
5.1. Effectiveness

Figures 3, 4, and 5 show the performance of detecting the um-
pire’s speech, the line judge’s shout, and the sound of beep on
the test set, respectively. In the three figures, “Depend.” means
that the event dependency (the “language model” of events) was
used, and “IET” means the inter-event timing was used.
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Figure 3: Performances of detecting umpire’s speech
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Figure 4: Performances of detecting a line judge’s shout

To check whether combining event dependency with inter-
event timing is significantly better than baseline, we run a sig-
nificance test (t-test). By the central limit theorem, the set of
F-scores obtained from the tests has an asymptotically normal
distribution, and so we are justified in using at-test to evaluate
their significance.

Table 3:p-values of thet-test comparing performance
Dependency Depend.+ IET Depend.+IET
vs. Baseline vs. Baseline vs. Depend.

UMP 0.015 0.002 0.274
LJ 0.009 0.015 0.050
BP 0.002 0.006 0.356

Table 3 shows that the use of both event dependency and
inter-event timing is significantly better (p 6 0.05) than the
baseline at detecting all three of the events under consideration
here. Adding inter-event timing when event dependency is al-
ready being used only significantly increases performance for
the line judge class. In general, adding the time-gap informa-
tion adds only a small amount to performance and most of the
gain comes form using the “syntax” of the game i.e. the event
dependency. However, the time-gap information is useful inim-
proving the efficiency of the computation (see next section).



Table 2: Computational efficiency of detecting audio eventsand its effect on F-score on the test set
Track Number 4 5 6 7 8 9 10

Reduction in computation (%) 8.01 9.49 11.15 15.73 16.71 18.61 15.62
Depend.(F-score) 0.6571 0.7504 0.8036 0.7783 0.7547 0.7117 0.7601

Depend.+IET (F-score) 0.6646 0.7577 0.8123 0.7791 0.7561 0.7078 0.7614
Depend.+IET+Eff. (F-score) 0.6656 0.7513 0.8108 0.7611 0.7607 0.6894 0.7554

4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Index of Sound Track

F
sc

or
e

 

 

Baseline
Depend.
Depend.+IET

Figure 5: Performances of detecting the sound of the beep

5.2. Efficiency

In our experiments, the computation on each audio frame with
GMM for seven sound classes is a very time-consuming task.
To reduce the computation, we make use of the event depen-
dency and inter-event timing shown in figure 1. Two methods
for computation reduction are used:

1. We can avoid performing this computation for every
frame by skipping some regions where no match events
would occur except silence (marked as “null” in our
data), such as the time region before a “Serve” event.

2. Given a certain hypothesized event, we only need to
compute the occurrence probability of a subset of next
events in regions.

For the first case, we can skip several hundred frames without
any computation work, while, for the latter one, we also do not
need to compute the acoustic probability for all sound classes.

Row 2 of Table 2 shows the efficiency gain on the seven
sound tracks, which has a mean value of 13.11%. Row 3 shows
the F-score using event dependency, and Row 4 the F-score us-
ing event dependency and inter-event timing without the use
of any computational reduction. The bottom row shows the F-
score when the efficiency techniques described above are used:
we see that the performance is substantially the same, for a use-
ful gain in computational efficiency.

6. Conclusions and Future Work
In this paper, a new framework was developed to improve de-
tection performance of key audio events in a tennis game. The
technique takes account of two contextual features, namely
event dependency and inter-event timing. The results obtained
show significant improvements in comparison with the baseline
in both performance (as measured by F-score), and a small gain
in computational efficiency.

Our immediate future work is to look in more detail at the
issue of how to balance the probabilities from the differentmod-
els used here, and how to apply them to more complex event de-
tection tasks. We will then begin to incorporate and integrate in-
formation derived from computer vision techniques. Our long-
term goal is to produce a system that can understand a tennis
game completely, and that is capable of being re-engineeredfor
a similar game with minimal human intervention.
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