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1 Introduction
Volumetric video is an emerging medium that allows free-viewpoint re-
play and rendering of dynamic scenes with the realism of captured video
[1, 5]. This has the potential to allow highly realistic content production
for immersive virtual and augmented reality experiences. Human models
are typically rendered using detailed, explicit 3D models, which consist of
meshes and textures, and animated using tailored motion models to sim-
ulate human behaviour and activity. However, designing a realistic 3D
human model is still a costly and laborious process. Recent work [2] has
shown that it is possible to learn and animate natural human behaviour
(e.g. walking, jumping, etc.) from human skeletal motion capture data
(MoCap) of actor performance. Motivated by recent advances in gen-
erative networks [2, 3, 4, 6] we propose an architecture for learning to
generate dynamic 4D shape. We show in this paper how to use a varia-
tional encoder-decoder to learn the mapping from 3D skeletal motion to
the corresponding full 4D volumetric shape and motion.

2 Method
The network architecture, shown in Figure 1, maximises the probability
distribution of the 3D skeletal joint positions, p = {{ps
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Ns

t
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s=1, encoded

in the latent space, z = {{zs
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Ns
t

t=1}
NS
s=1, and learns the generative mapping

of the decoder to the corresponding 4D shape M̃s
t for sequence s ∈ NS at

time instance t. Generative networks learn dependencies from the input
data and capture them in a low-dimensional latent vector zs

t , creating com-
pact representations zs

t ∈Rd , where d = 128 is the latent space dimension.

P(p) =
∫

P(p | z) P(z)dz (1)

The distribution P(p|z) denotes the maximum likelihood estimation of
dependencies of p over the latent vector z, and P(z) is the prior proba-
bility distribution of a latent vector z, and P(p) is the probability density
function for the 3D skeletal pose. Here to ensure a compact representa-
tion P(p|z) is modelled as a Gaussian distribution with mean µ(z) and
diagonal co-variance σ(z) multiplied by the identity I, which implicitly
assumes independence between the dimensions of z.

P(p | z) =N (p | µ(z), σ(z)2 ∗ I) (2)

Figure 1: 4D shape representation network overview. The input is 3D
skeletal motion and the output is 4D shape.

The variational encoder-decoder network architecture is composed of an
encoder that receives 3D skeletal joints as input, and a decoder that gen-
erates high resolution 4D shape. It is trained over 104 epochs, which
is optimised through validation data to avoid over-fitting with a learning
rate of 0.001. The encoder is trained to map the posterior distribution of
data samples p to the latent space z, meanwhile forcing the latent vari-
ables z to comply with the prior distribution of P(z). However, both the
posterior distribution P(z|p) and P(p) are unknown. Therefore, the vari-
ational encoder-decoder gives the solution that the posterior distribution

is a variational distribution Q(zs
t |M̃s

t ), computed by a neural network. In
order to make Q(zs

t |M̃s
t ) consistent with the distribution P(z), we use the

Kullback-Leibler (KL) divergence as follows:

argminKL(Q(zs
t | M̃s

t ) || P(zs
t )) (3)

The decoder is trained to regress from any latent vector zs
t in the latent

space z to a 4D shape representation M̃s
t . Equation 4 defines the loss

function minimised by the network to achieve a compact latent space rep-
resentation and generative network output.

L = (Q(P(ps
t | zs

t ) | M̃s
t )−Ms

t )+
KL
ω

(4)

This is an optimal approximation of the true samples Ms
t , where ω =

batch size × input data size, and Ms
t is the ground truth 4D shape for the

3D skeletal pose ps
t of sequence s at time t.

3 Results
The proposed generative network reconstruction error is ≈ 0.0072 m and
≈ 0.0036 standard deviation, for the results in Figure 2. The network
achieves compact representation of 4D volumetric video sequences, see
Figure 2, capable of two orders of magnitude compression compared to
the captured 4D volumetric video. This allows applications to use less
memory in run-time, making it more suitable for technologies with mem-
ory constraints. The network allows a mapping of skeletal motion capture
data to generate novel 4D shape sequences. This gives the possibility
to re-use MoCap datasets to generate novel 4D shapes, and creates op-
portunities for animation applications to easily incorporate novel motion
sequences.

Figure 2: The top row represents the skeletal motion used to synthesis the
4D shape on the bottom row containing training and validation data.
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